PROJECTILE MOTION WORKSHEET

1. A stone is thrown horizontally at $8.0 \mathrm{~m} / \mathrm{s}$ from a cliff 80 m high. How far from the base of the cliff will the stone strike the ground?
2. A toy car moves off the edge of a table that is 1.25 m high. If the car lands 0.40 m from the base of the table how long did it take to hit the floor and with what horizontal velocity was it moving?
3. A bald eagle in level flight at a height of 135 m drops the fish it caught. If the eagle's speed is $25.0 \mathrm{~m} / \mathrm{s}$ how far from the drop point will the fish land?
4. A pistol is fired horizontally toward a target 120 m away but at the same height. The bullet's velocity is $200 \mathrm{~m} / \mathrm{s}$. How far below the target does the bullet hit and how long did it take to get there?
5. A bird, travelling at $50 \mathrm{~m} / \mathrm{s}$ wants to hit a man 100 m below with a dropping. How far in distance before flying directly over the man should the bird release it?
6. Barry Bonds hits a $125 \mathrm{~m}\left(450^{\prime}\right)$ home run. Assuming that the ball left the bat at an angle of 45° from the horizontal, calculate how long the ball was in the air.
7. Will Clark throws a baseball with a horizontal component of velocity of $25 \mathrm{~m} / \mathrm{s}$. It takes 3.00 s to come back to its original height. Calculate its horizontal range, its initial vertical component of velocity and its initial angle of projection.
8. A tennis ball thrown at a velocity of $25.0 \mathrm{~m} / \mathrm{s}$ at 53.1° lands exactly 3.00 s later on the top of a building. Calculate the horizontal distance it traveled and the height of the building.
9. **A golfer can drive a ball with an initial speed of $30.0 \mathrm{~m} / \mathrm{s}$. If the tee and the green are separated by 80 m , but on the same level, at what angle should the ball be driven (Hint: recall that $2 \cos (x) \sin (x)=\sin (2 x))$?
10. How long will it take a shell fired from a cliff at an initial velocity of $800 \mathrm{~m} / \mathrm{s}$ at an angle 30° below the horizontal to reach the ground 150 m below?

Answsers:

1) 32 m
2) $\mathrm{t}=.5 \mathrm{~s}, \mathrm{v}_{\mathrm{x}}=0.8 \mathrm{~m} / \mathrm{s}$
3) 130 m
4) $\mathrm{t}=0.6 \mathrm{~s}, 1.8 \mathrm{~m}$ below target
5) bird should lay turd 225 m before above man
6) 5 s
7) $75 \mathrm{~m} ; \mathrm{v}_{0 \mathrm{y}}=15 \mathrm{~m} / \mathrm{s} ; 31^{0}$
8) $\mathrm{R}=45 \mathrm{~m} ; \mathrm{H}=15 \mathrm{~m}$
9) 31^{0}
10) 0.37 s
