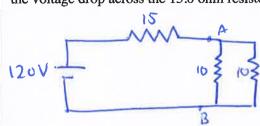
P	hy	Si	CS

Name			
Date	Period	#	

Ingrum 12/97
Topic 21 Review Worksheet
1. For Questions 1-10, write the letter of the correct answer to the left of the question.
1. As resistors are added to a circuit in series, the current in the circuit. (a) increases (b) decreases (c) remains the same
2. As you plug in more appliances in your house, the total current in the circuit (a) increases (b) decreases (c) remains the same
3. As you plug in more appliances in your house, the total resistance (a) increases (b) decreases (c) remains the same
4. An ammeter connected in parallel with a battery and resistor will (a) give the current in the circuit (b) read zero (c) measure the resistance of the battery (d) burn out
5. A voltmeter has an internal resistance that is (a) high (b) low
6. An ammeter has an internal resistance that is (a) high (b) low
7. Current is the same throughout in a (a) series circuit (b) parallel circuit
8. The sum of the resistors is less than the smallest resistor in a (a) series circuit (b) parallel circuit
9. If you have three identical resistors in parallel and one is removed, the current through the remaining resistors
(a) increases (b) decreases (c) remains the same
10. If one resistor in a parallel circuit is removed, the total current (a) increases (b) decreases (c) remains the same
2. A 10 Ω resistor, a 20 Ω resistor, and a 30 Ω resistor are connected in series with a 120 V source. What is the current in the circuit?
RT = 10 + 20 + 30 = 60 D
120V

$$R_T = 10 + 20 + 30 = 60 \Omega$$

$$R_T = \frac{120 \text{ V}}{1} = \frac{120 \text{ V}}{60 \Omega}$$


2A

3. A 10.0 Ω resistor, a 20.0 Ω resistor, and a 30.0 Ω resistor are connected in parallel across a potential difference of 120 V. What is the current through the 20.0 ohm resistor? $\frac{1}{10} = \frac{1}{10} + \frac{1}{20} = \frac{6+3+2}{60}$

$$\frac{1}{R_{r}} = \frac{1}{10} + \frac{1}{20} + \frac{1}{30} = \frac{6+3+2}{60}$$

$$J = \frac{V}{R} = \frac{120}{20} = 6$$

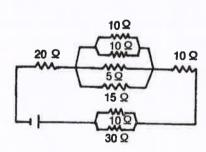
4. A 15.0 Ω resistor is connected in series with two 10.0 Ω resistors in parallel and a 120 V generator. What is the voltage drop across the 15.0 ohm resistor?

$$\frac{1}{R_{AB}} = \frac{1}{10}t_{10} = \frac{1}{10} = \frac{1}{5} R_{AB} = 5$$

$$R_{T} = \frac{120}{20} = 6A$$

$$V = 15 = 90$$

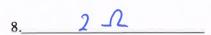
5. The following appliances are all connected in parallel in one of the lines in the electrical system of a house: a 15 Ω electric fry pan, a 25 Ω refrigerator, a 20.0 Ω heater, and a 12 Ω toaster. The fuse in this line melts at 28 A. Will this arrangement of appliances cause the fuse to melt? Explain.

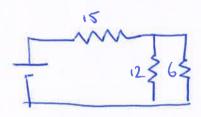

$$\frac{1}{R_{T}} = \frac{1}{15} + \frac{1}{25} + \frac{1}{20} + \frac{1}{12} = \frac{1}{12}$$

$$R_{T} = 4.167 D$$

$$I = \frac{120}{4.167} = 28.798$$

5. YES , Total cullent cocceeds loading


6. Find the effective resistance of the circuit in the diagram.


6. 39 1643 52

7. A 6 Ω resistor, a 54 Ω resistor, and a 32 Ω resistor are connected in series. Calculate their total resistance.

8. Calculate the total resistance of four 8 Ω resistors connected in parallel.

9. Two 12 Ω resistors and a 6 Ω resistor are each connected in parallel. A 15 Ω resistor is added to the parallel group in series. Calculate the voltage needed to drive a 2.0 A current through the total resistance.

$$R_{T} = 15 + 4$$

= 19 Ω
Since $I = 2$
 $V = 2 \times 19 = 38 \vee$

10. Three resistors are connected in parallel across 20.0 V. The resistors draw a total of 5.0 A. Two of the resistors have values of 24Ω and 12Ω . What is the value of the third resistor?

20 7 24 3 12 x 3

Falue of the third resistor?

$$\int_{24}^{24} = \frac{20}{24}$$

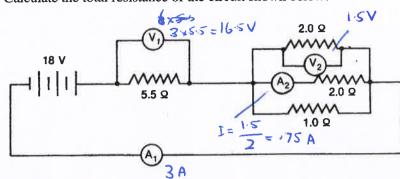
$$\int_{5}^{12} + \frac{10}{6} + \frac{20}{x} = 5$$

$$\int_{6}^{15} + \frac{20}{x} = 5$$

$$\int_{5}^{15} + \frac{20}{x} = 5$$

$$\int_{6}^{15} + \frac{20}{x} = 5$$

$$\int_{15}^{15} + \frac{120}{x} = 30 \times 120 = 15 \times 120 = 120 \times 120 = 15 \times 120 = 15 \times 120 = 120 \times 120 =$$

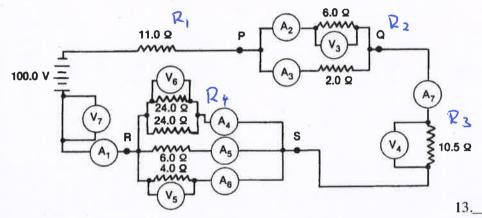

11. A coffee pot rated at 360 W, an iron rated at 960 W, and an oven rated at 1200 W are connected in parallel across 120 V. The 15 A fuse in the circuit immediately blows. Calculate the total current drawn.

Sina
$$P=VI + V=120$$

$$I_{c} = \frac{360}{120} = 3A \qquad I_{I} = \frac{960}{120} = 8A \qquad I_{o} = \frac{1200}{120} = 10A$$

$$I_{T} = 3+8+10 = 21A$$

12. Calculate the total resistance of the circuit shown below.



$$L = \frac{1}{2} + \frac{1}{12} = \frac{3}{2}$$

$$Q_{11} = \frac{3}{2} = \frac{1}{2}$$

$$R_{T} = 6.5 + 0.5$$

13. What are the meter readings for the diagram in problem 12?

14. Calculate the reading for each of the 7 ammeters in the circuit diagram below

$$\frac{1}{R_1} = \frac{1}{6} + \frac{1}{1} = \frac{4}{6} + \frac{1}{4} = \frac{1+1+4+6}{24} = \frac{1}{24} + \frac{1}{6} + \frac{1}{4} = \frac{1+1+4+6}{24} = \frac{1}{24} = \frac{$$

Calculate the reading for each of the 7 ammeters in the circuit diagram below.

$$\frac{1}{R_1} = \frac{1}{6} + \frac{1}{4} = \frac{4}{7}$$

$$\frac{1}{R_2} = \frac{1}{6} + \frac{1}{4} = \frac{4}{7}$$

$$\frac{1}{R_3} = \frac{1}{6} + \frac{1}{4} = \frac{4}{7}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{6} + \frac{1}{4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12}$$

$$\frac{1}{R_4} = \frac{1}{12} + \frac{1}{12$$

15. Calculate the reading for each of the 5 voltmeters in the circuit diagram in problem 14.

$$V_{ps} = 4 \times 2 = 8 \times V_{4} = 4 \times 10.5$$

= $V_{6} = V_{5}$ = 42 \times

$$V_{4} = 4 \times 10.5$$
= 42 V
 $V_{3} = 1 \times 6 = 6 \text{ V}$

$$V_{7} = 0$$